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ABSTRACT

A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described.

Turbulence is simulated using a single field-equation model. Computational overheads are

minimized through the use of a single edge-based data-structure, an efficient multigrid solution

technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and

efficiency of the code are evaluated by computing two-dimensional flows in three-dimensions

and comparing with results from a previously validated two-dimensional code which employs

the same solution algorithm. The feasibility of computing three-dimensional turbulent flows on

grids of several million points in less than two hours of wall clock time is demonstrated.
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1. INTRODUCTION

In recent years, the use of unstructured meshes has become more widespread for compu-

tational fluid dynamics problems. The advantages of unstructured meshes lie in their ability to

deal with arbitrarily complex geometries, while providing a natural setting for the use of adap-

tive mesh enrichment techniques. However, most of the successes of unstructured meshes

have been in solving inviscid flows, particularly in three dimensions. Recently, two-

dimensional turbulent flow solutions using unstructured meshes have been demonstrated

[1,2,3,4]. However, few attempts at solving similar three dimensional flows are known. While

many publications have appeared in the literature conceming three-dimensional unstructured

grid Navier-Stokes computations, few if any of these have demonstrated engineering quality

solutions for practical aerodynamic flows. The inclusion of viscous terms into an existing

unstructured Euler solver is, in fact, a simple proposition. The real challenge is to devise a

complete solution strategy capable of resolving complex flows with good accuracy at accept-

able cost on highly stretched grids.

The problems associated with unstructured mesh computations of turbulent viscous flows

are threefold. Firstly, a suitable mesh with highly stretched elements in the boundary layer and

wake regions must be generated. Secondly, a turbulence model capable of operating efficiently

on unstructured meshes must be incorporated. Finally, the memory and CPU overheads associ-

ated with the solution technique must be low enough to allow for the use of very fine meshes

which are required for meaningful results. Much work has been performed in the two-

dimensional setting in order to alleviate these problems. However, the extension of these ideas

to three dimensions has often been hindered by the overwhelming computational overheads

incurred by most methodologies.

This paper describes the development of an efficient three dimensional Navier-Stokes

solver. Most of the techniques employed have been developed and demonstrated previously in

the two-dimensional setting, and this work involves their extension to three dimensions. By a

careful choice of data-structures, the use of a rapidly converging multigrid algorithm, and the

implementation of parallel processing techniques, a solution technique which incurs acceptable

overheads and is capable of dealing with relatively fine grids is obtained.

2. METHOD DESCRIPTION

2.1. Discretization and Data Structures

We seek steady-state solutions to the Favre-averaged Navier-Stokes equations. These

equations must be closed using a suitable turbulence model in order to model the Reynolds-

stress terms. Spatial discretization of the Navier-Stokes equations is performed using a Galer-

kin finite-element approach. The conserved flow variables are stored at the vertices of the

mesh, and the convective fluxes are assumed to vary linearly over each tetrahedral element.

For the viscous terms, velocities are assumed to vary linearly over the tetrahedral elements.

Velocity gradients can thus be constructed at element centers, which then enables the discreti-

zation of the second derivatives contained in the viscous terms. Additional artificial dissipation

terms are constructed as a blend of Laplacian and biharmonic operators. The Laplacian dissipa-

tion results in locally first-order accuracy, and is thus triggered only in the vicinity of shock

waves, while the third-order accurate biharmonic dissipation is employed throughout the
flowfield.



Thenaturaldata-structurewhicharisesfroma finite-elementpointof viewis theelement
data-structure,in whicha list of elementsis stored,with pointersfor eachelementidentifying
thefourverticeswhichconstitutethatelement.It haspreviouslybeenshown,in thecontextof
inviscid flow calculations,that the convectivetermscanbe assembledusinganedge-based
data-structure,whichis bothmorecompact(in termsof memoryoverheads),andminimizesthe
amountof gather-scatterrequiredon vectorandparallelcomputerarchitectures.The basic
data-structurefor assemblingthe convectivetermsis thusa list of edges.For eachedgewe
storethe addressesof thetwo end-pointsof theedge,andthreecoefficients,whichrepresent
thex,y,andz componentsof thenormalof thefaceof thedualmeshpiercedby theedge,as
shownin Figure 1, for the two-dimensionalcase. In threedimensions,if oneconsidersall
tetrahedrawhichsharea givenedge,asshownin Figure2, thefacenormalassociatedwith this
edgecanbecomputedasthesumof all thetetrahedralfaceswhichtouchonlyoneof thetwo
end-pointsof theedge(i.e.sumof all theF, in Figure 2).

When employing a Galerkin finite-element discretizalion, the viscous terms are tradition-

ally thought of as a sequence of two loops, one to construct gradients at triangle or tetrahedron

centers, and another to form the final residual contributions. However, the final discrete

viscous terms obtained in this manner form a nearest neighbor stencil. The viscous terms for a

vertex i depend only on values at i and at vertices k, such that k is joined to i by a mesh edge.

Thus, an edge-based data-structure may also be employed to assemble the viscous terms. This

fact has previously been pointed out in several references [2,5,6]. In [2], a complete derivation

of the edge-based coefficients for a Hessian matrix is given. In three-dimensions, this would

require the storage of 9 coefficients per edge, since the discrete Hessian is written as
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where Volcv represents the volume of the union of tetrahedra which touch vertex i. However,

the local edge-based coefficient matrix is symmetric about the diagonal. This fortunate fact has

apparently gone unnoticed in the literature. A proof of this is given in the Appendix. Thus,

we need only store 6 coefficients per edge for the discretizalion of the viscous terms. If the

cross derivative terms in the Navier-Stokes equations are neglected, this can be reduced to 3

coefficients per edge. Also note that for the discretization of a Laplacian, a single coefficient

per edge is required, which is given by the sum of the diagonal terms. Thus, if we adopt the

thin-layer form of the Navier-Stokes equations, a single edge coefficient is sufficient to com-

pute the viscous terms.

At this stage, the full Navier-Stokes terms have been included, and thus 6 edge-

coefficients are stored. It is useful to examine the amount of storage this represents compared

to other approaches. Tetrahedral unstructured meshes of N points contain t_V tetrahedra and

(¢t + 1)N edges, neglecting boundary effects. The value of tx depends on the mesh, but usually

lies between 5 and 6. The traditional element data-structure requires the storage of the four

comers of each tetrahedron. Taking ct = 6, this corresponds to 24N. Excessive storage is

required if a double loop is employed, with the cell gradients stored as intermediate values (at

least 9 extra values per cell or 54N). A single loop over the tetrahedra can however be used to

assemble the full viscous terms. Within the loop, the gradients may be computed, divided by

the volume, multiplied by the appropriate face normal, and then accumulated to one of the four

comer vertices of the cell. The last two operations are repeated for each comer vertex of the



cell. This approachrequiresonly the storageof the elementdata-structureplus the vertex
coordinates(whicharenot requiredin theedge-basedapproach),thusa totalof 27N. The
edge-basedapproachrequiresa total of 42N or 15Nmorethantheelement-basedapproach.
However,the elementapproachrequiresan orderof magnitudemoreoperationssincethe
geometricquantitiessuchascell volumeandfacenormalsmustbe recomputedeachtime in
theloop. If anyof thesequantitiesarestoredratherthanrecomputed,thestoragerequirements
quicklyexceedthoseof theedge-basedapproach.This is a classicexampleof a memory-cpu-
timetrade-off.

Sincetheviscoustermsof theNavier-Stokesequationsarenot strictlysecondderivatives
of agivenquantity,butcontaintermssuchas

Vx( laVxu) (2)

anexactimplementationof a Galerkindiscretizationrequirestheevaluationof theviscosityat
thetetrahedracentroidsin the constructionof the edgecoefficients.(seeappendix).If the
viscosityis not constant,theedgecoefficientscannotbecomputedin a preprocessingphase.
Thus someapproximationmust be madein orderto enablethe useof preprocessededge
coefficients.Thesimplestapproachis to approximatetheviscosityfor eachedgecontribution
astheaverageof thetwovaluesateachendof theedge.Thustheviscoustermsarecomputed
as
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It is important to realize that this discretization does not correspond exactly to the Galerkin

discretization. Only under certain conditions do the two formulations become equivalent (e.g

linear viscosity variations and regular triangulations). Another approach is to rewrite the
viscous terms as

V(pVx) = BV2x +VBVx (4)

and evaluate the double gradient term at each vertex using a nearest neighbor stencil. Gradient

calculations of this type can be performed using the convective edge-based coefficients. Both

of these approaches have been tested in two-dimensions and virtually no difference in the final

solution could be seen. These modifications are necessary for the viscosity in the momentum

equations, the values of B'velocity in the energy equation, as well as for the eddy viscosity in

the turbulence equation. The effect of the eddy viscosity variation is expected by far to be the

most important of all for practical turbulent flows. In the present work, the formulation of

equation (3) is employed exclusively.

Finally, another approach which has been suggested for computing the viscous terms [6],

consists of forming the gradients of velocity at each vertex, using the nearest neighbor stencil

of each vertex, and forming the second derivatives of the viscous terms by reapplying the same

integration to the first derivatives. This approach is attractive because it requires little addi-

tional storage. All operations can be performed using the edge-based coefficients required for

the convective terms. However, it can easily be seen that, on a one dimensional mesh of spac-

ing h, this scheme reduces to a second difference on a stencil of size 2h. This will result in

lower accuracy and possible odd-even decoupling. Since packing enough points into the

viscous layers is generally one of the main difficulties associated with viscous flow



computations, a scheme that operates on every other point is highly undesirable. This scheme

should therefore he rejected.

2.2. Turbulence Modeling

The o_-equation turbulence model of Spalart and Allmaras [7] has been implemented in

the present solver, since this approach avoids the complications involved in implementing alge-

braic models on unsla'uctured meshes [8], is reasonably robust and inexpensive, and has been

shown to yield favorable results in three dimensional aerodynamic flows [9].

The turbulence equation is also discretized using the edge-based data-structure. The con-

vective terms are treated using a first-order upwind formulation, and the diffusion terms are

treated analogously to the viscous terms in the flow equations. The particular discretization

ensures positivity of the discrete solution. The turbulence equation is advanced in time using a

point-implicit treatment [10]. For a single equation, this corresponds to a Jacobi iteration.

This scheme is attractive since it ensures positivity of the turbulence equation variable not only

at steady-state, but throughout the convergence process. The turbulence equation is effectively

solved decoupled from the flow equations (using different local time-step values). The conver-

gence of both the turbulence equation and the flow field equations is accelerated using an

unstructured multigrid algorithm. The turbulence and flow equations are only coupled on the

finest grid of the multigrid sequence, where the eddy viscosity values from the turbulence
model are fed back into the flow solution.

This particular field-equation turbulence model requires information concerning the dis-

tance of each grid point to the closest wall boundary. The simplest way of computing this dis-

tance function is to compute the normal distance from a given grid point to all boundary faces,

and preserve the minimum distance found. This results in an O(N 5/3) algorithm, where N

represents the number of grid points. For fine grids, this becomes excessively costly.

Although more sophisticated search techniques exist for reducing this to O(NlogN), a simple

solution is to compute the distance function on the second finest mesh of the multigrid

sequence, and then to interpolate these values to the finest grid. This alone reduces the cost of

computing the distance function by a factor of 32.

2.3. Solution Technique

The flow equations and turbulence equations are advanced in time to obtain the steady

state solution. The flow equations are advanced using a multi-stage Runge-Kutta explicit

scheme, while the turbulence equation is solved as described above. Local time-stepping and

residual averaging are employed to accelerate the convergence of the flow equations.

An unstructured multigrid technique is employed to further accelerate the convergence of

both the flow and turbulence equations. This technique, which has previously been demon-

strated for the Navier-Stokes equations in two dimensions [ 1], and for the Euler equations in

three dimensions [5], employs a set of non-nested coarse and fine meshes. In a preprocessing

step, the indirection arrays which correspond to the restriction and prolongation operators

(interpolation of variables, residuals, and corrections) between each successive pair of grids are

constructed, using an efficient search algorithm. On domain boundaries, which may not coin-

cide between the various grids due to the discretizalion of curved surfaces which constitute the

boundaries, the search and interpolation procedures are carried out in the parametric space

which defines the surface patches of the boundary geometry. Linear interpolation is used to
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transferflow variables,residualsandcorrectionsbetweenthevariousmeshesof themultigrid
sequence.This requiresthestorageof four addressesandfour coefficientspermeshpoint.
Oncetheseoperatorshavebeen constructed and stored, the inter-mesh multigrid transfers can

be implemented as a simple gather-scatter of array elements within each multigrid cycle.

The unstructured multigrid algorithm incurs approximately a 30% memory overhead,

mostly due to the extra storage required for the coarse grids of the multigrid sequence, and

requires roughly 90% more CPU time per cycle, but results in convergence rates which are an

order of magnitude higher than the single grid solver.

2.4. Parallel Processing

The use of one basic and simple data-structure, and the choice of an explicit scheme aug-

mented with multigrid, enable a relatively simple and efficient parallel implementation of the

solver on shared and distributed memory parallel architectures. Previous experience with dis-

tributed memory machines has been less than satisfactory. Such implementations require con-

siderable effort and have not been able to demonstrate superior performance for this class of

problems [11,12]. The shared memory vector-parallel architecture of the CRAY-YMP-C90 has

proved to be very effective for the current type of problems. For example, the 16 processor

CRAY-YMP-C90 was found to provide more than double the performance of the INTEL Delta

machine using 512 processors on a three-dimensional unstructured multigrid Euler solver [l 1].

Furthermore, the shared memory architecture and the parallel compiler support available on

CRAY machines enable a relatively simple implementation using standard FORTRAN 77.

Parallelization on shared memory architectures is imperative for large cases, not only to speed

up solution time, but also to avoid idling processors in a time sharing environment when jobs

becomes large enough to fill the main memory of the machine.

The majority of the work in the present solver involves loops over edges. These loops

must be both vectorized and parallelized. Since multiple edges meet at each mesh vertex, the

loops contain data dependencies which inhibit both vectorization and parallelization. In order

to vectorize these loops, the list of edges is split into subgroups, or colors, such that within

each color, no vertex dependencies exist. The overall loop is hence transformed into an outer

loop over all colors, and an inner vectorizable within each color. A simple parallelization stra-

tegy is to further divide the colored groups into subgroups that can be computed in parallel.

This is automatically done at compile time by the autotasking compiler provided the appropri-

ate compiler directive is specified at the beginning of each loop. The subgroups are then distri-

buted over all processors, taking advantage of the complete vector and parallel power of the
machine.

For the inviscid version of the present solver, speedups of 13 to 14 on 16 processors

have been observed in a dedicated environment, indicating a degree of parallelism of over 99%

has been achieved according to Amdahi's law. The viscous cases presented in the results sec-

tion, however, were run in a time sharing environment, and yielded speedups between 10 and

12 on 16 processors. Benchmarking of the full viscous solver in a dedicated environment is

planned for the near future.
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3. RESULTS

3.1. Single Segment Wing

In order to validate the three dimensional Navier-Stokes solver a two-dimensional tur-

bulent flow over a wing geometry with no spanwise variation has been computed, and the

results compared with the solution from a two-dimensional unstructured flow solver on an

equivalent grid. The particular two-dimensional solver employed has been previously

described and validated, and is routinely used in production environments [1,13]. This two-

dimensional solver employs the equivalent discretization, solution technique, and turbulence

model as the three-dimensional code described in this paper. Therefore the two codes should

give nearly identical results for purely two-dimensional cases.

The first test case involves the transonic flow over a wing of aspect ratio 2 with no

sweep or spanwise variation. The wing section (independent of span location) is an RAE 2822

airfoil. The three-dimensional grids employed for computing the flow over this wing geometry

are displayed in Figures 3. They are formed by first constructing a two-dimensional unstruc-

tured grid about an RAE 2822 airfoil, using the method described in [14]. The two-

dimensional mesh is then stacked in the spanwise direction, thus forming a mesh of spanwise

prizms. This prizmatic mesh is then converted into a tetrahedral mesh by dividing each prizm

into three tetrahedra using a variant of the prizm division algorithms reported in [15,16] . The

resulting geometry consists of a wing with a symmetry plane at both ends of the wing. There

is thus no wing tip present and no spanwise variation whatsoever. This can be thought of as a

typical wing-in-wind-tunnel two-dimensional test.

The finest mesh for this case is depicted in Figure 3a. The entire mesh contains 1.04

million points and 6 million tetrahedra. The mesh is formed by 33 spanwise stations with

31,571 grid points at each station. The normal mesh spacing at the wing surface is 10-5

chords, which results in cell aspect ratios of the order of 500:1 in these regions. A total of

five meshes were used in the multigrid sequence for this case. Four of these meshes are dep-

icted in Figures 3a through 3d. Each coarser mesh contains a factor of approximately 8 fewer

points than the previous mesh, and consecutive meshes are generally non-nested.

The freestream Mach number for this case is 0.73, the incidence is 2.79 degrees, and the

Reynolds number is 6.5 million. The solution is depicted qualitatively in Figure 4, as a plot of

density contours on the surface of the wing and symmetry walls. The lack of any spanwise

variation of the contours on the wing indicate the presence of purely two-dimensional flow.

The flow is transonic and a normal shock is observed slightly aft of the mid chord location.

Figure 5 provides a more quantitative picture of this solution. The computed surface pressure

at the mid-span location is compared with experimental data as well as with the computed

results of the two-dimensional code on an equivalent station grid of 31,571 points. Both the

two and three-dimensional codes tend to underpredict the lift compared with the experimental

data, a fact which is attributed to the turbulence model employed. For example, the same

two-dimensional code achieves a lift value some 10% higher using the Baldwin-Lomax model.

However, the two and three-dimensional flow solutions agree very well with each other. The

three-dimensional solution is slightly more diffusive than the two-dimensional solution, which

is attributed to the presence of extra spanwise dissipation, which is non-zero even in a two-

dimensional flow, due to the presence of diagonal edges in between neighboring spanwise sta-

tions.



The convergence rate for this case is plotted in Figure 6. The residuals are seen to be

reduced by almost 4 orders of magnitude over 200 multigrid cycles, for an average residual

reduction of 0.957. This is comparable but somewhat slower than the rate of 0.943 achieved

by the two-dimensional multigrid code, which is also plotted for comparison purposes in the

same figure. Finally, the single grid convergence rate of the two-dimensional code is also

shown in the figure. A residual reduction of only 2 orders of magnitude over 1000 cycles is

achieved for the single grid approach. Thus the multigrid procedure converges over 10 times

faster than the single grid code, for the two-dimensional case. Since the three-dimensional

multigrid convergence rate is close to that of two-dimensional case, one can conclude that

gains of similar magnitude are afforded by the multigrid algorithm in three dimensions. The

three-dimensional single grid convergence is not plotted due to the excessive computer costs

required for such a run with obvious conclusions.

In order to demonstrate the three-dimensional capability of the present code, the wing of

the previous case (aspect ratio 2) is given a sweep of 30 degrees, and a taper of 0.5. This

spanwise variation results in fully three-dimensional flow. The flow over the swept and

tapered wing at the same conditions is computed using equivalent grids to those described

above (same point densities). Figure 7 depicts the solution in terms of density contours on the

wing and symmetry wall surfaces. The convergence rate for this case is almost identical to

that displayed in Figure 6 for the unswept three-dimensional wing, and is therefore not

displayed.

For both of these cases a total of 177 Mwords of memory was required. This translates

to 170 words per fine-grid vertex. This includes all the arrays for the coarse grid variables of

the multigrid sequence. Both of these cases required 75 seconds of CPU time per multigrid

cycle, or a total time of 4.2 single CPU hours on the CRAY-YMP-C90 machine. When run in

multitasking mode on all 16 processors of the machine, the total aggregate CPU time rose to 5

hours, but the jobs were executed in 28 minutes of connect time, as indicated by the batch job

log file, in a time-sharing environment in which only 60% of the machine was dedicated to this

particular job. In a dedicated environment, these jobs can be expected to execute in just over
15 minutes.

3.2. Three-Element High-Lift Wing

The next test case consists of flow over a high-lift wing configuration with a slat and a

single slotted flap. The wing has an aspect ratio of 2 with no sweep or spanwise variation.

The wing section (independent of span location) is a Douglas three-element airfoil, which has

been extensively tested both numerically and experimentally [13]. The three-dimensional fine

grid employed for computing the flow over this wing geometry is displayed in Figure 8. This

grid is formed by first constructing a two-dimensional unstructured grid about the three-element

airfoil using the method described in [14], and then stacking the grids and subdividing the

resulting prizmatic elements, as described previously. The resulting geometry can be thought

of as a typical wing-in-wind-tunnel two-dimensional test, with symmetry end walls at both

extremities of the wing.

The finest mesh for this case contains 1.84 million points and 10.6 million tetrahedra.

The mesh is formed by 33 spanwise stations with 55,865 grid points at each station. The nor-

mal mesh spacing at the wing surface is 10-6 chords, which results in cell aspect ratios greater

than 1000:1 in these regions. A total of five meshes were used in the multigrid sequence for

this case. Each coarser mesh contains a factor of approximately 8 fewer points than the



previousmesh,andconsecutivemeshesaregenerallynon-nested.This levelof meshresolu-
tioncorrespondsto theequivalentminimumrequiredresolutionfor adequateperformancepred-
ictionusingthetwo-dimensionalcode,asdeterminedby a grid resolutionstudy[13]. To the
author'sknowledge,this representsthe largestaerodynamicunstructuredgrid computation
attemptedto date.

ThefreestreamMachnumberfor this caseis 0.2,theincidenceis 16.21degrees,andthe
Reynoldsnumberis 9 million. Theflow is assumedto be fully turbulent,thusno transition
pointsarespecified.The solutionis depictedqualitativelyin Figure9, asa plotof density
contourson thesurfaceof thewingandMachcontourson thesurfaceof thesymmetrywall.
The lackof anyspanwisevariationof the contourson the wing indicatesthe presenceof
purelytwo-dimensionalflow. Thecomputedsurfacepressureat themid-spanlocationis com-
paredwithexperimentaldataaswell aswith thecomputedresultsof thetwo-dimensionalcode
onanequivalentstationgrid of 55,865pointsin Figure10. Excellentagreementbetweenthe
experimentaldataandthetwo-andthree-dimensionalcodesisobserved.

In orderto demonstratethe three-dimensionalcapabilityof the presentcode,the seg-
mentedwing of thepreviouscase is givena sweepof 30degrees,anda taperof 0.5. This
spanwisevariationresultsin fully three-dimensionalflow. ThefreestreamMachnumberis 0.2
aspreviously,but theincidenceis loweredto 12degrees.Theflowoverthesweptandtapered
wing(aspectratio2) is computedusingequivalentgridsto thosedescribedabove(samepoint
densities).Figure11depictsthesolutionin termsof densitycontourson the wing surfaces
andMachcontourson the wall surface.Thewall Machcontoursarequalitativelysimilarto
thosedisplayedin Figure9 for thepreviouscase,whilespanwisevariationof thewingsurface
contoursis noted,indicatingthepresenceof fully threedimensionalflow.

In Figure 12, the multigridconvergenceratesof the two-dimensionalcode,and the
three-dimensionalunswept-wingandswept-wingrunsarecompared.Thetwo-dimensionalrun
andthethree-dimensionalunsweptwing run converge at very similar rates, achieving a resi-

dual reduction of 4.5 to 5 orders of magnitude over 300 cycles. The three-dimensional swept

wing run converges somewhat slower than the previous two runs, but still achieves a similar

level of residual reduction over 450 cycles. This similarity between the two-dimensional and

three-dimensional convergence rates is a good indication that the full benefit of the multigrid

algorithm has been achieved for three-dimensional flows.

Both of the above cases required a total of 312 Mwords of memory, and 140 to 175

seconds of CPU time per multigrid cycle on the CRAY-YMP-C90 machine, depending on the

amount of concurrency achieved during a particular run in the time-sharing environment. A

typical 450 cycle run on all 16 processors required 1.9 hours of connect time, as indicated by

the batch job log file, in a time-sharing environment in which 65% of the machine was dedi-

cated to this particular job. In a dedicated environment, such a job can be expected to execute

in approximately 1.25 hours.

4. CONCLUSIONS

The aim of this paper has been to demonstrate the feasibility of computing turbulent

viscous flows over complex geometries on fine grids using the unstructured mesh approach.

While it is recognized that this capability is expensive, it is entirely feasible from a technical

standpoint. This is made possible by several factors:

a) the reduction of memory overheads through the use of a single efficient data-structure

b) the implementation of a rapidly converging multigrid algorithm



c) theuseof parallelprocessing
d) the availability of a large central memory machine with multiple rapid processors and simple

to use parallelization tools.

The code currently requires approximately 170 words per fine grid vertex, which includes

all the coarse grid information. It is estimated that this can be further reduced by 10 to 15%.

The code runs at 320 Mflops on a single CRAY-YMP-C90 processor and requires 72

microseconds per vertex per multigrid cycle, with 200 to 400 cycles usually required for con-

vergence. Predicted performance on a dedicated 16 processor machine is 4 Gflops and 5.8

microseconds per vertex per cycle, corresponding to a speedup of 13. Thus, on the current

maximum configuration of the machine (1 Gword, 16 processors), a case of 6 million grid

points could be computed in 2 to 4 hours. Of course whether such a computation is worth its
cost in an industrial environment is another matter.

One of the main obstacles to employing this capability in a production environment

remains the grid generation process. The ability to reliably generate very fine highly stretched

three-dimensional tetrahedral grids is still under development, and recent progress has been

made in this area [15,16]. At this stage, the flow solver has been demonstrated by constructing

three-dimensional unstructured grids using a two-dimensional stacking procedure. In the

future, solutions over more complex geometries such as partial flap wings and complete aircraft

configurations will be attempted. This will require interfacing with a more general grid genera-

tion procedure.
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APPENDIX A

SYMMETRIC EDGE-BASED COEFFICIENTS FOR VISCOUS TERMS

1. 2D Case

The edge coefficients for the viscous terms are derived by considering the Galerkin

finite-element discretization of these terms. Assuming piecewise linear variation of the veloci-

ties, the Navier-Stokes equations are multiplied by a test function of compact support and

integrated over the entire domain. This derivation, which is detailed in [1], yields the follow-

ing discrete form for the second derivatives at vertex i:

(1)
(gUy)x (gUy)y 2 Volcv e (gUy) Ay e (guy) Ax e

where the summation is over all triangular elements which have a vertex at i. Volc_ represents

the volume or surface covered by the union of these triangles, and Axe,Aye denote the x and y

increments along the outer edge of the triangle e, as depicted in Figure 1. The first derivatives

represent gradients on the triangles of the mesh. For piecewise linear functions, such gradients

can be evaluated exactly:

_ l IAuik AuijAyi, 1ux 2 vol A AyiJ -

(2)

-1 Iau_kax,j _ Au,jax,k 1Uy - 2 vola

where the cell volume is given by

VOIA = AXikAyij - Axij Ayil_ (3)

for triangle A shown in Figure 1. Using the properties of differences such as Axij = -Axji and

Axij + Ax:k = Axik, the volume can be rewritten as

volA = _:k ayik - axi, Ay# (4)

By analogy, the gradients and volume for triangle B are given by

l [AuijAyit - AuitAyijlUx - 2 volB

--1 [AuijAxit_AuilAxij I (5)uy - 2 volB

votB = _il ay_l - ax_l,ayil

In evaluating the coefficient for the edge joining vertices i and j, it can be seen that only trian-

gles A and B in the summation will yield non-zero contributions. Substituting equations (2)

and (5) into (1), and setting (Axe,Aye) = (Axik ,Ayj,) for element A, and (Axe ,Aye) = (Ax0,Ay 0) for

element B, we obtain a final expression for the double derivatives. For example, the xx
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derivative at vertex i takes the form

Volcv Ux x = -4 eages VOIA + lan vola (6)

where the summation is over "allincoming edges for vertex i. The viscosity values laa and lab

represent cell average values. Since this involves the values at nodes I and k as well as at i

and j, this construction is inconsistent with a purely edge-based formulation. For this reason,

these values are approximated by the average of the values at vertices i and j, denoted as laav.
The four double derivatives can now be written as:

3 IAY_ Ayjk Ayu AYjl
v°'_v [la ux ]x = -,( "_ Au'J [. vola + vo,,

 oloE.. 1
y 4 laav Auij L 'Y°-_A + volB

Volc_ [laU, l x - -3 [.Ax/k Ayjk Ax// Ayit.]
4 l.ta_ Aulj [ vola + voIB J

Axa Axjk= 3
Vole, [la uy ]y _- ;1,., Auq

The terms involving grid metrics can

voIa + volB

(7)

all be precomputed and stored as edge-based coefficients.

Furthermore, the metric expressions are symmetric about the ioj indices. Therefore the same

coefficients may be used for constructing the flux contribution to vertex i from vertex j, as the

flux contribution to vertex j from vertex i.

The remaining property to be proved is the equality of the two cross-derivative

coefficients i.e

Axit AyjtAyik Axjk + Ayi, Axjl Axik Ay# + (8)
volA volB vola volo

This property is not evident at first glance. Certainly each term on the left hand side of (8) is

not equal to the corresponding term on the right-hand side. In order to prove the equality, we

form the difference of the two expressions in (8), and insert the expressions for the cell

volumes in the denominator taken from (4) and (5):

Ayik Axjk AYit Axjt
+

Ax# Aya - Axa Ayjk Axa Ayj; - Axjt Aya

_;* AYik axi; Ay,;

_jk Ay;. - axik ayj_ a_. ayj_ - axj, Ay.

which can be rearranged as follows

Axik Aya - Axa Ayjk ax. ayi, - axj, ay,,

axjk ay,, - ax;, ay# _,, ayj, - _, ay,,

(9)

Hence, the equality of the two cross-derivative coefficients.

= 0 (lO)
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2. 3D Case

An analogousconstructionof theedge-basedcoefficientsin 3Dyieldstheexpression

F, Gj

oqj = ___ vole (11)
e

where the a_i correspond to the edge coefficients in defined in section 2.1, i,j=1,2,3 denote the

x,y,z subscripts, (as opposed to vertex _dresses as in the 2D case) and the proportionality

constant has been absorbed into the _,i coefficients. The summation is over all tetrahedral ele-

ments surrounding the edge (i.e edge 1-2 in Figure 2). F_ denotes the ith component of the

normal area vector of the face of tetrahedron e, which touches vertex 2, but does not contain

edge 1-2, and Gj the jth component of the face normal of tetrahedron e which touches vertex

1, but does not contain edge 1-2. Since these coefficients are symmetric in F and G, they can

be used to compute the flux contribution to vertex 1 as well as the flux contribution to vertex

2, along edge 1-2. This requires the storage of 9 coefficients per edge. If the coefficients are

symmetric in the i,j indices, then only 6 coefficients per edge are required. In order to prove

this property, we form the difference

O_iJ --O_Ji = _e FivOIeGj _e FJvoleGi (12)

The volume of a tetrahedral element can be expressed as

vole = ( Fi Gj - Fj Gi ) Axk (13)

where i=j=k and Axk represents the difference (xk)a - (Xk)b, where a and b are the two remain-

ing vertices other than the edge endpoints 1,2 of the tetrahedron e, as shown in Figure 2.

Inserting this expression into equation (12), we obtain

Fi Gj Fj Gi 1 (14)
( Fi Gi - F) Gi )Axk - _ (Fi G, - Fj Gi )Ax, = _ Axk

Since the summation is over all tetrahedra surrounding the edge 1-2, the sum of all such Axk

forms a closed polygon encircling the edge, and thus vanishes. The coefficients are thus sym-

metric in ij for all values of i and j, and thus only 6 coefficients per edge need to be stored.
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Figure 1
In_rnal Control Volume (Dotted Line) Associated with Vertex i, and Face Associated with Edge i-j.

The Face Normal (bold arrow) is 1/3 of the Sum of the 2 Outer Edge Normals.
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Figure 2
Illustration of Tetrahedra Considered for Formation of Coefficient Associated with Edge 1-2.

F, and G_ represent Face Area Normals
for the Two Exposed Faces of Each Tetrahedron e.
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Figure 3a

Fine Grid Employed for the Rae 2822 Wing Test Case

(1.04 million points, 6 million tetrahedra, Wail spacing 10-5 chords)

Figure 3b
Second Finest Grid Employed for the Rae 2822 Wing Test Case

(135,000 points)
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Figure 3¢

Third Grid Employed for the Rae 2822 Wing Test Case

(23,000 points)

Figure 3d

Fourth Grid, Employed for the Rae 2822 Wing Test Case

(261o points)
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Figure 4
Computed Density Contours for the Rae 2822 Wing

(Mach= 0.73, Re = 6.5 million, Incidence = 2.79 degrees)
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Figure 5

Comparison of Computed and Experimental Surface Pressure for Rae 2822 Wing

(Mach = 0.73, Re = 6.5 milSon, Incidence = 2.79 degrees)
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Comparison of Observed Convergence Rates for the Three-Dimensional
Rae 2822 Wing Multigrid Case and the Corresponding Two-Dimensional

Case both with and without Multigrid Acceleration
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Figure 7
Computed Density Contours for the Swept and Tapered Rae 2822 Wing



Figure 8
Fine Grid Employed for the 3-Element Wing Test Case

(1.84 million points, 10.6 million teUrahedra,Wall spacing 10-6 chords)
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Figure 9

Computed Solution for the 3-Element Wing Test Case.

Mach contours are displayed on the Symmetry Plane, and Density Contours on the Wing Surfaces.

(Mach -- 0.2, Re = 9 million, Incidence = 16.21 degrees)
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Figure 10

Comparison of Computed and Experimental Surface Pressure for 3 Element Wing Case

(Mach = 0.2, Re = 9 million, Incidence = 16.21 degrees)
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Figure 11
Computed Solution for the 3-Element Swept and Tapered Wing Test Case.

Mach contours are displayed on the Symmetry Plane, and Density Contours on the Wing Surfaces.
(Mach = 0.2, Re = 9 million, Incidence = 12 degrees)
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